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Convergence of a Vortex In Cell Method for the 
Two-Dimensional Euler Equations 

By G. H. Cottet 

Abstract. We describe a Vortex In Cell method in which the assignment function used to 
compute vorticity values at the grid points from particles is twice differentiable, while the 
velocity need only be continuous. We prove an error estimate for the velocity in terms of the 
meshsize, the interparticle distance and the size of the computational domain. 

1. Introduction. Consider the Euler equations in the whole plane R2, which can be 
written in terms of vorticity X and stream function 4 in the following way: 

(1.1) f aat +(cur V)@ 0, 

(1.2) (E) A = W 

(1.3) | V_ I-O when Ix- +oo, 

(1.4) W (x, O) = Wo(X) 

Recently, vortex methods have been introduced to approximate equations (E). The 
first proof of convergence has been given by Hald [6], then generalized by Beale and 
Majda [1] and Cottet [3]. In such methods the basic idea is 

(1) to discretize the initial vorticity by delta functions; 
(2) to calculate the velocity field by using a regularized Green kernel; 
(3) to transport the vorticity by the velocity field. 
It is natural to think of a finite element method rather than an integral one in step 

(2). The approximation then results in coupling a particle approximation (to solve 
E.1, E.4) and a finite-difference method on a fixed grid (to solve E.2, E.3). Such 
methods, called Vortex In Cell methods, are extensively used in practice. In 
particular, they are preferred to methods using explicit kernel calculations because 
in many situations they lead to a smaller computational cost. Moreover, such 
methods have the particular feature of naturally taking into account more general 
boundary conditions, for instance periodic boundary conditions. 

However, for technical simplicity, we consider here the approximation in the 
whole plane. 

An outline of the paper is as follows. In Section 2 a VIC method with TSC 
assignment function (in the terminology of [7]) is described using either finite 
element or finite-difference methodologies. Section 3 is devoted to the properties of 
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408 G. H. COTTET 

the resulting Poisson's solver. The proof of convergence is then given in Section 4; it 
is strongly based on the results given in [3] for vortex methods with nonsmooth 
cutoff functions. Finally, error estimates are discussed in Section 5, together with 
possible improvements of the method. For a different analysis of VIC methods we 
refer to the recent work [4], and to [5] in the context of plasma-physics. 

2. Description of the Method. Throughout this paper we shall assume, for 
technical simplicity, that the initial vorticity o has compact support. 

Given a parameter Ax > 0, consider a uniform partition of supp o by rectangles 
Bk, 

Bk = (x E R2; (k - )AX < x, < (ki + )Ax}, k = (k, k2). 

Denoting by xk = (k1Ax, k2Ax) the center of Bk, we define the following ap- 
proximation of o: 

(2.1) x= YkY (x - Xk), where ak = AX2Zo(xk). 
k 

Here, and everywhere in the sequel, we write Lk to denote the finite summation 

YIkI < N' N being some ad hoc constant. 
Now, given an approximation `h of u- = rot+, let (Xkh)k be the solution of the 

system of ordinary differential equations 

(2.2) dXk/ds =(Xk 

Xkh(?) = Xk, k EZ Z k ,k < N. 

The measure solution of the system 

(2.3) f ph7 (h _ =, 
h 

w'(.,) = W 

is then given by 

(2.4) Wh(x t) = akS(X - XkX(t)). 
k 

To specify our approximation of the problem (E), we now have to couple 1h and Wh 

by solving some analogue of (1.2), (1.3). 
For this purpose, and in order to work on a bounded domain, we introduce for 

R > 0 the square OR = (-R, + R)2, with boundary FR. Then we consider the 
following Neumann problem, which is denoted by PR("), 

(2.5) fAi =c in OR, \ al/an = CR(@) on FR, 

where the constant CR(@) is given by 

CR(W) 8Rf -(x) dx, 

so that PR( w) is a well-posed problem. 
Together with PR(") we may introduce the linear mapping Y such that, if 4 is 

the solution of PR(w) (unique up to an additive constant), Y(w) is the following 
vector-valued function: 

(2.6) Y( /) 
rot in OR' 

(0 elsewhere. 
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We now define a P1-finite element approximation of PR(o) in this way: Given 
E> 0 such that R/c E N, denote by xJ the points 

XJ= (i, jic), (i, j) E Z2, 

and by 7-h the triangulation of OR whose vertices are the xJ which lie in OR and 
whose sides are parallel to the axes and the first diagonal. Finally, define 

Jlh = { + E C(KR), IIT is linear for any T in h7-h } . 

-h is provided with its usual basis { w8(x - xJ)}(1,j) Z2. Then consider the 
approximate problem ph(o): 

(Find Ah E Oh such that 

(2.7) i| v~ph *vcdx=f | w@*hdx+f CR(C) whdy forall h in 4h. 

Derivatives of Ah are piecewise constant; in order to handle continuous quantities, 
we first introduce in a classical way the differential quotients for a continuous 
function 4, 

{ 1 1i = -c (+1 ,j#-)-1,J) = -2, (cI)j+1 - j-1), 
(2.8) 

e2 

+i+12,j E (+',j 
- 

Cj), (a24),j+1/2 E ,j+1 AZ-)' 

where j' j = 4(x,J), and we define the mapping yoh: 

soh(W), / n) =-(3aj)h ) if x 1 E3/4 

0 if not, 

where 4h is the solution of Ph(co). We then define 

(2.9) h(w)(x) = E h(0) jwj(x - xij), x E R2. 
Ij 

A natural coupling of uj and Wh would be to set jjh = yh(Wh). In fact, in order 
to ensure stability, we have first to regularize w . 

Let X be the characteristic function of(- , + 1)2 and 

XE: x 2X X(x/)- 

We set 

(2.10) jh = h * XE 

and 

(2.11) uh50h(,h) 

Our approximate problem finally results in (2.1), (2.3), (2.11). Observe that the 
parameter h of the approximation takes into account all of Ax, e and R. 

We shall first have to prove the following existence and uniqueness result. 

THEOREM 1. For all T > 0, there exist a unique measure oh and a unique continuous 
function U h solutions of the equations (2.1), (2.3), (2.11). 
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Then our main result is the following convergence theorem. 

THEOREM 2. Let T > 0. Suppose that wo has compact support and that the solution 
u of the Euler equations is sufficiently smooth. 

Given p E (2, + X), s > 1, there exist constants C, and e0 such that under the 
assumptions 

E <E, Cl s < Ax < C2cEs, R > C3 Es/(21p1) 

we get for all t E [O, T] 

U- uh)(. t) I(LP(R2))2 < C Ec + x 
+R 

Before giving the proof of these results, we state a version of our method based on 
a finite-difference formulation of y h which is more suitable for a "Particle in Cell" 
interpretation. 

To get this alternative formulation, the first step is to assign values to ch on the 
grid points x1j, when oh is not a continuous function. This is done by setting 

(2.12) co1,j 21 W 
*(xe*WJ)(X ) 

or, in view of (2.4), 

(2.13) h 1 E ak(Xe * We )(Xij 
- Xkh(t)) 

E keZ2 

Then we are looking for a grid function (4i~h)(1 j) E 2 such that 

(2.14) (Ayph) = Wh if jid| < R, lije < RI 

I[~ h - h.4p - ~h h + =h +CR((h 

(2.15) E2 [-2 ''' 211?1 1+ ij 
if iE = R and ijEd < R, 

(2.16) ~ iL~ph + ~iih = +CR(Coh) 
(2.16) E2 [2 At, 1 2 +' 1 tJ E 

if ic = R. ft = R. 

where AlE denotes the usual five-point approximation of the Laplace operator on the 

x1j grid, the other sides and vertices of OR being treated in a similar fashion. Next, 
we set 

U-h ( ((2+ h)J JJS _(ah)I ,J) if x1j E Q3R/4' 
J 0 if not, 

and 

(2.17) Uh(x) = Siuljw"(x - x1J), x e RE . 

We claim that the formulations (2.10), (2.11) and (2.14)-(2.16), (2.17), respectively, 
are equivalent. To see this, write 41h- = J >1 hjw,(X -x1) and choose ph = 

wj(x - x10J) in (2.7). Then we obtain (2.14), (2.15) or (2.16), depending on whether 
X is located in the interior on QRi in FRI or at a corner of QR, respectively. 
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From this new formulation of Y'h it is now possible to describe our method in 
terms of Vortex In Cell terminology. 

Equation (2.12) defines a vorticity assignment to the grid points, i.e., it shows how 
to compute the vorticity at x11 in terms of the vortices Xk. Only those vortices which 
ensure (Xe * w)(x -Xk(t)) # 0 give a contribution at xJ. These vortices are 
clearly located in the shaded area of the following drawing 

As a consequence, the vorticity carried by a particle is shared among the nine 
nearest grid points. This observation, together with the W2,' regularity of the 
assignment function X? * w, enables us to speak of a TSC assignment scheme (see 
[7]). 

On the other hand, (2.11) defines ih as a piecewise P1 function, interpolated from 
the values Ui computed on four grid points. Our method may thus be viewed as a 
mixed PIC-TSC method. 

3. Preliminary Results Concerning the Mapping 5h. In this section our purpose is 
to derive properties of stability, decay at infinity and consistency for 5Yh. The 
parameter h will therefore only take into account E and R, and we shall set 
h = (e, R). 

Concerning stability and consistency, we first prove the following result. 

LEMMA 3.1. Let w be in L?(R2) and 4 be the solution (unique up to a constant) of 
P(w). There exist constants Cp independent of h such that 

(3.1) I|s/h(W)IILP(2R) + CP{I4JLP.R ? RIIV'ILP(OR)} p E [2, ? ], 

(3.2) Iso(w) - rot 4' lLP(QiW3R/4) p Cp1 w , [2, + oI. 

Proof. It is convenient to work on a reference domain Q =1. Setting 

@)= (^ (Rc), x E X 

C =CR() h-( ') 

it is readily seen that if 4 and Ah are solutions of PR(w) and ph(0), then 4 and Ah 

defined by 

(3.3) X(x)= '2+(Rx), h(X)X= i 42h(Rx) 
()=R2R2 
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are solutions of P1,(W) and Ph(W). Hence, techniques used by Rannacher and Scott 
in [9] allow us to derive the following estimates: 

1 | cpjjljj1,P1 A2, 1 - AR 11c 112j p - 

To come back to OR and obtain (3.1) and (3.2), it remains to use the following 
obvious identities: 

(3.4) 11 DD' IILP(&:) = RI-2-(2/P)II D14 11LP(QR), 1 E N. El 

In the next lemma we summarize some classical results about the operators A and 
A" which will be extensively used in the sequel. For R > 0, we denote by i'R (resp. 

UiR') the square i3R/4 (resp. 2R/2) and by FR, (resp. FR') its boundary. 

LEMMA 3.2. Let 4 (resp. Ah) be a continuous function (resp. a grid function on the 
grid xij) in OR. Let a,4h, I= 1,2, be the differential quotients defined by (2.8). 
Assume that A4\ = Alyh = 0 in 2OR. Then we have 

(i) I I I IL-(OR) 1 L`0II (PR)' 

(ii) Max x 1 
Q |hi J I < Ma xJ E1RI ihJI 

(iii) Maxx, EQ |(Rlh)i jl < (C/R)MaxX ORl4Jl, / = 1,2. 

Proof. Assertions (i) and (ii) are direct consequences of the continuous and the 
discrete maximum principles for A (see [2]). Assertion (iii) results from discrete 
interior Schauder estimates (see [11]). In fact, we first use the transform (3.3); this 
enables us to apply Schauder estimates in (- 3, + 3 )2 which is strictly included in 'Q. 
Coming back to O' and OR, and using (3.4), provides us with the desired estimates. 
El 

As a first consequence of the estimates just given, we obtain the following lemma 
which gives the asymptotic behavior of {yh(Co) when IxI goes to infinity. It will be 
seen later that this result enables us to establish stability and consistency for the 
scheme, but it is interesting in its own right since it proves the uniform, with respect 
to h and a, decay of {yeh(Wf,). 

We introduce the following notation: If X has compact support, we denote by 
p ( X,) the real number 

p(o) = Max{|IxI,(x) 0 0). 

We can now state 

LEMMA 3.3. Let X be in L1(R2) with compact support. There exist constants R0 and 
C, which only depend on II IILl(R2) and p(o), such that if R > R0 and E < 1 then 

(3.5) 92h(&,)(x) < C if xl > Ro. x I 
Proof. We shall make use of the existence of a fundamental solution for A\. More 

precisely, we know that there exists (cf. [11] for instance) a grid function g, defined 
on the whole space R2, such that 

(le = A- 2iO .SO (8 is the Kronecker symbol); 
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moreover, g verifies 

(a _<) a C 1=1,2. 
E + 1XIJ I 

Define the grid function Ah by 

Ah(X,) = 2 Xk/) 
k, I 

and set R0 = p (co) + 1. Then one easily derives the following result: 

(A^ h) i,j Co',j 

(3.6) ( 
)K'WkH,1 I M = 1,2; 1xJ> 2R0. 

jX,1j I k,/I 

Hence, if 4h is a solution of Ph(co), one gets A&(4h _ 4h) = 0, and Lemma 3.2 
applies, with the result that 

(3.7) 
x<e 2' 
Max, |8(+ Ma (4iph) 

Max | a2 (4o~h p hh) R X,, -R 
X,e GE?' ) 

Setting 4h = -h _ #h, we now have to estimate MaxX ORI(4h), jl. The idea is to 
find a Neumann problem for which 4h will be an approximate solution. To this end, 
we shall use the finite-difference formulation (2.14)-(2.16). 

The function 4h clearly satisfies (2.14) with a zero right-hand member. A simple 
calculation shows that (2.15) and (2.16) are also verified with respective right-hand 
members 

f CR(c) + (a1 +0) 1/2 + 2e (a2 0 1/2 +2 ( 1 2 0i, + / 

_ C + +4?)is' e ~(a h)i+(/2,j + -(2O)( ij+1p2 2 + 

and similar equations for the other sides and vertices of OR' 

Since CR(@ ) 1k011L1(R2)/R, and using (3.6), we observe that IC1jl < 
C11W11L1(R2)/eR, where C is independent of h and co. We are now looking for a 
function f, piecewise constant on FR, such that 

(3.8) 2o f (x) w,,(x - xj) dy = CJ. for all xj E FR. 

For this purpose we renumber clockwise the vertices which belong to -RI 

xij = xI n E N, Xn+N=Xn, forall xij E R, 

ECIj= Cn 

Let xI n+1/2 = 2(x n + 0) and denote by f the piecewise constant function 
defined by f = Cn on [Xn- 1/2, Xn+ 1/2] where (C4) is solution of the system 

(3.9) 1( Cn1 + 3C1+ C 1) = C", for all n E N. 
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Observe that, by Hadamard's theorem, (3.9) has a unique solution. It is now obvious 
that f satisfies (3.8) and, moreover, 

If IIL (rJ) sup ICn,| 2sup ICn | . 

Then, as a consequence of (3.8), we may consider (4h ),,, as the values taken at the 
vertices xJ by the P1 finite element approximation in '4h of the solution Al of the 
Neumann problem 

{ - l = ? in OR, 

= f on FR. 

In order to derive L' estimates for 44, we work on Q and define the following 
quantities: 

f ,)= Rp1(Rk), ( = R 4(Rx), !f(x) =f(Rx). 

Then we get 

AK= ? in OR, 

a =f on FR 

and, denoting still by 4h the P1 interpolate of 4hj on -h, 

for p > 2: 

1144 L)/R h 
C|| 4h 4| W1'P(Q) (by the Sobolev inequality) 

< CIl {1 11 Wi'p(o) 

C 
< C|| f I| W-""''(p) < R 

so that 114 hIILx(QR)/R < C. Finally, using (3.6) and (3.7), we get 
if Ix,1J > 2RO, x1 E 

I(a,+ph)i I C(-; + IXjI } I IKSIIL1(R2) 

where C is independent of h and a; coming back to the definition of Y h, this 
estimate ends the proof of the lemma. E 

We are now looking for more precise stability and consistency results than those 
obtained in Lemma 3.1. In particular, we wish to get -2 rather than - in the bound 
of (3.2). This is a superconvergence result, which is known to occur because the mesh 
is uniform, but the proof, for R fixed, is usually based on the strong regularity of 4. 
Therefore, the constants which appear increase with R. 

To overcome this difficulty, we approximate 99h with a Riesz projection _h for 
which we have optimal stability and consistency results. 

To begin with, let us define for o E C(R2) and E > 0 

curls - = - ( X((x + (0, )) - (X -(0, e)), -o (x + (, 0)) + (X -(e, 0))). 
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Next, let ii be the solution of the following Dirichlet problem: 

t-A curl w in QR, 

iiu = 0 on FR. 

Then, we denote by Sh(w) the Riesz projection of [i in I4h' where /h is the 
subspace of C(K2'R) spanned by the family {we(x - xj), x,j E QR, so that _h(CO) 

satisfies 

f V( (co)) Vpdx = f (curl,3p)qAdx, all p EA'h. 
12;?~ ~ ~~~~'~ 

In order to make sure that gh is well defined, we require the parameters to meet the 
condition R/4c E N. The following result shows that for large R, Y h and h are 
close to each other. 

LEMMA 3.4. Let X E C(R2) have compact support. There exist constants Ro and C 
depending only on ICoI Ll(R2) and p(co) such that, if R > R0, 

(3.10) _1? qhSP(C) ||X0) 

(3.11) - _h(6) 11200.R R 

Proof. It is a simple matter to check that 

e(Rh(W)) = e(5yh(W)) in 2'R. 

On the other hand, 

Xh(W?) = O on FR' 

and, by Lemma 3.3, 

| R on FR, R > R0, 

where C = C(pQco), IoIIL1(R2)) R = - Ro(p(w)). 
Lemma 3.2, assertions (ii) and (iii), now apply in QR C C S2Q to give the desired 

bounds. E 

It remains now to describe stability and consistency properties of Oh. 

For this purpose, we introduce the Green function 

G(x) = 2Logfxt, x E R2{0}, 

and its curl 
K(x) = curlG(x). 

Concerning stability we have 

LEMMA 3.5. Let X E C(R2) have compact support. There exist constants Cp and R0 
depending only on p, IfoII L(R2) and p(w) such that, for R > R0 and ? < 1, 

(3 12) ||q (W)|LPS2) <, CPS |G * Curle , WLP(&2') + eG * curlw coI p ,UR 
+ R(2/P)- 1 + ER(2/p)-2 p E- [2, e o), 

( _qh(W) 11P C{ RJI|G *curlo IILP(E 1 ) L ( + I G * curl, co I 

+R(2/p1-2} pE[2,+oo]. 

*We denote by I I the usualseminorm of W"P(Q2), 1 AP p + o, -I 0. 
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Proof. Applying the results of Rannacher and Scott [9], we may write 

1qh (W) IILP(O2) < CP{IIiiIILP(OR) + '-I " plpU} p E [2, + oo 

I ( 

14 
) 1 jP'Q/ -<, Cpt R 11 II LP(OR) + I " 11,p, } p E [2, + oo] 

(in fact we proceed as in the proof of Lemma 3.1 in order to use the estimates of 
Rannacher and Scott in Q). 

Next, we observe that ii - G * curl co satisfies, if R is sufficiently large, 

A u-G *curl w) = 0 in Q, 

(3.15) ki - G* curlI/,F $O CR1+' 1 > 0. 

This last bound is based on the uniform decay of G* curl w with respet to e. It 
could be directly proved, but will be an immediate consequence of a subsequent 
result (Lemma 4.4) and so will be assumed true for now. 

Let us set G = u - G*curl 'o and +(x)= 4(Rx/2) for E e 2; we obtain 

11I4 112,c,f = 11 4 IIL-(r) + RI 4 11,00,r + R21 4 12,oo,0 

and, owing to (3.15), 114112,ooP < C/R. 
The regularity properties of A ensure that 

C 
II4'fI2,q,i~ < CIt 4' II2-(1/q),qV <- CII!|+|2,, o R q > 2, 

and, by the Sobolev inequalities, 

I + 1o~ 1+12,qfi~ -< R 

Therefore, we obtain 

I 1%R R2 - 

Since, by the maximum principle, we also have 

we finally get 

I ii(x) I < |(G * curl, w)(x) I + R 

R 
ia u(X) <! (G*curl W)(x) + 2 1,2. 

Consequently, 

IIUIILP(O') < C{IGG*curl, w LP(Q') + R(2/P)1}, 

|iji~~ u < C{ G * curl + R (2/P) } . 

This, together with (3.14), yields the desired estimates. O 
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Combining (3.15) and optimal consistency L' estimates proved in [9] for 
Mh(w) - Ui, we obtain 

LEMMA 3.6. Assume that X is sufficiently smooth and has compact support. Then 
there exist constants Cp such that for R large and e small enough, 

hG *curl, -9() IILP(QR) A P2 + R(2/P))}, p E [2, + ox), 

IG curl, co R < CP{- + R( /P)2}, p E [2, ?ox]. 

We point out that the two previous results take into account the effects of both the 
truncation of the plane and the finite-difference scheme. It remains now to introduce 
particles. 

4. Convergence of the Approximation. We begin with proving Theorem 1. We use 
the following result. 

LEMMA 4.1. Let Q be a convex domain whose boundary F is Lipschitz continuous. 
Let f E L2( 2) have compact support in i and let a E R2. Then the Neumann problem 

{-A =(a v)f inn, 
(4 1) X On F 

an~~on 

has a unique solution 4 in H1(0)/R and I#I1 H'(Q)/R < CIIIf I IL2(o). 

Proof. We consider the following variational problem: 

{ Find 4 E H1(R)/R such that 

fv vApdx= f -(a )vpdx, all p E H1(Q2)/R. 

The bilinear form in the left-hand member is elliptic, which proves the existence 
and the uniqueness of the solution 4. It is now readily seen that, since f has its 
support in Q, our variational problem can be regarded as a formulation of the 
Neumann problem (4.1). 0 

We now present the 
Proof of Theorem 1. It suffices to check that the system of ordinary differential 

equations 

(4.2) tfdXs =h(Xk(s),s) 

Xk (?) 
= 

xk, 

admits a unique solution in [0, T]. Let 

B = ((Xk)lkl<N E (10(0, T))N, all s E [0, T]: Xk(s) E =R-1}. 

We prove that (4.2) is Lipschitzian in B. For the sake of simplicity we drop the 
subscripts h, E and R (the constants occurring in the sequel will depend on these 
parameters, of course). Making explicit how uh depends on Xh, we can rewrite (4.2) 
as 

{dXk a ka kX(X Xk(W)))(Xk(S), S), 

Xk (?) = xk. 
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We have thus to estimate 

Y ( akX (X 
- Xk (s)) (Xk (s) S) 

- ( E akx(x -X (s K ) (Xk(s), s). 

Let us set 

w(x, s) = akX(X - Xk(s)), Ox(X, s) = E3akX(X - Xk(s)). 
k k 

We get 

5Y(W)( Xk(S),S) -Y(W')( Xk'(S) IS)| 

(Y(W) - 5(W'))(Xk(s), s) I + JY(W')(Xk(S), S) - J(W')(Xk,(S), S) 

< | W') 1IL-(Q2) + 119Y(w) 11 W1 O(2)MaX |Xk(S) - Xk (s) | 

Since Y(w - ') E -, which is a finite-dimensional subspace of Wl?(S2), we can 
write 

(4.3) 9?(W - W') IIL(2) < CII (W - W') IIL2(&2) 
and, by a classical stability result, 

(4.4) 1L9"(W - W') IIL2(&2) < CII jIH'()/R, 

where 4 denotes the solution of the Neumann problem { A = - @ 

an C(W - W') 

Since (Xk) e B, (Xk') E B, we have 

C(w) = C(w') = ak 
k 

On the other hand, we can write 

- )(X) k(X(X- Xk(s)) -x(X - Xk 
k 

k[Xk(S) 
- 

Xk(s)] v X[X - Xk(S) + t(Xk(s) - Xk(S))I dt, 
k 

and Lemma 4.1 applies, giving the bound 

Jj+||H'(&)/R <C CEjakl MaxjXk(S)-Xk(S)|||X||L-(Wj2 
11/2 

k k 

-< C Ma| Xk (S s Xk(s)| 
k 

Hence, by (4.3) and (4.4), we get 

1L( - ') |L(Q2) < CMax Xk(s) - Xk(s) 
k 

and, finally, 
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Next, since (4.2) is Lipschitzian we know that (4.2) has a unique maximal solution in 
[0, T*] C [0, T]. Suppose now that T* / T; then there exists some index k such that 
Xk(T*) E MB. But if R is chosen sufficiently large, this cannot occur because of the 
definition of ,yh which ensures that h = 0 if x 03R/4+ 

If R > p(co) + 1 and if 3R + E < R - 1, we have 

Xk (0) E= OR-11 

U W x = 0 if x iZ QR-1 

and therefore (provided E < 2 

Xk(T*) E OR-1 

completing the proof. O 
We now come to the convergence itself. The basic point is to write the error 
_~ - u u in the following way: 

U - -h = [K * -X(W)] + [Ih(W _ )]h 
(4.5) 

K w 

+ [#h(joh) _yh(Coh)] in Q' 

where joh was defined in (2.10) and Rh in Section 3. 
In order to estimate the third bracket, the following result will allow us to apply 

Lemma 3.4. 

LEMMA 4.2. Assume that MaxIlXj(t) - Xjh(t)I < 1 for all t in [0, T]. Then there 
exists a constant C such that 

||@ 
h(_, t) IIL1(R2) '< C t E [O. T]. 

P(Coh(, t)) <_ C, 

Proof. Since IIXeII L'(R2) = 1 we clearly have 

|| @h(_* t ) ||L,(RW) < E I jal * 

On the other hand, it is readily seen that 

p(Coh(_, t)) < Max I X. (t) - Xh(t) |+ e + p (co(- < C. 

Lemma 3.4, therefore, can be applied to give 

LEMMA 4.3. Under the assumption that Max IXj(t) - Xj(t)I < 1 for t in [0, T], we 
have forR > R0(T) 

11X(Coh( , t)) _ yfh(Coh(_ t)) ||LP(Q") < CP R(21p) - 1 

|h ((, t)) - 
h(C(-, t)) j1 jpQua < CPR (2p)-2 p E [2, + ]o 

Next, we rewrite the first bracket in (4.5): 

K * w _ #h(w) = (K * w - G *curl w) + (G *curl w- h(W)). 

On the one hand, Lemma 3.6 gives an estimate for (G curled , - #h(W)). On the 
other hand, we can derive an estimate for (K * w - G * curl, w) from the following 
result, whose proof can easily be obtained from the arguments given in [10], for 
instance. 
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LEMMA 4.4. Let IL be a measure in R2 such that 

(1, Mt) = 1, (X1, 9I) = (X2, y) O 

and, for E > O, let the measure [Et be defined by file yp) = ([1 (E 
Then forf E W11(R2) n W1?'(R2) with compact support, we have 

J|K * f - K * 
M 

* f IILP(RW) < CP_ _ 

We first rewrite G * curls w as curl6 G * w. Then a straightforward calculation gives 

(4.6) curl, G =K *(?8 1 le 3 ? ), 
where E denotes the tensor product in R2 and 

l(X) = l(X 

1 = characteristic function of [-1, +1]. 

Letting now [ = 2(8 E 1, 1 ? 8), we are in the situation of Lemma 4.4. We have 
therefore proved the following result. 

LEMMA 4.5. Assume that wo E W1"1(R2) n W1?'(R2) with compact support. There 
exist constants Cp= Cp(T) such that for E small enough, R large enough and 
t E [0, T], 

||(K * w)( t) -h( II)(, t) LP(Q") < CP{ E + R(2/P)-3, p E [2, + oo), 

(K * w)(., t) ( CPf E + R(2/P)-2 } p E [2, + oo] 

The observation made in (3.15) concerning the decay of G *curl. w is also clear 
now. Writing 

curlG * w= K *[ w (8 1 , e 3)] =]K 

and using the decay of K, we get 

'(curiG * w)(x)I < C(p(w ), IIwiILl(R2)) /?1 if IXI > p(We), 1 > O. 

I 
R 

x I1+ 
But we clearly have 

p(w8) < p(w) + E and IIWIL(R2)=IIIIL1(R2) 
so that (3.15) is satisfied. 

We also point out that writing (4.6) is just one way to express the regularization 
effect of the finite-difference scheme. 

The term Rh(W _ - h) is more difficult to estimate. Before applying Lemma 3.5, 
we need a bound for G *curly(W - Ch). Using Ch = Wh * X, we can write 

curlG *(w - ,h) - curlG * w -(curl, * X?) * wh. 

We now set 

(4.7) K= curl, G *X, 
Then, 

(4.8) curlG * (w - Coh Ke* ( - 
Wh) + (curlG - K)* 

Applying Lemma 4.4 successively with 

f = (8 E I, Ie 8) * w and f = (8 E 1?, 1 eED 3)* , 1= 1 2 
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we get, if co is sufficiently smooth, 

(4.9) II(curl G - K)* wIiW1'P(R2) CEc. 

Now estimating K *(c - wh) amounts, on the one hand, to investigating the 
regularity properties of the kernel K,, and on the other hand, to making use of 
techniques involved in particle methods with nonsmooth cutoff. 

We first establish 

LEMMA 4.6. The following assertions holdfor E > 0: 
(i) K E W2P(R2) n W - (R x, lxI < 2,}), p E (2, + X), 

(ii) IKe I I,,R2 _ C/El 1, I = 0, 1, 
(iii) IKeIlPR2 

< CP/E I(2/P), / - 0, 1, p E (2, + oX), 

(iv) la'K,(x)l < C/IxI'+, 1 > 0, IxI > 2c. 

Proof. Denote by K', K2, K 1, K2 the components of K and K.. We shall prove 
our assertions for K'-: 

aG 
K? =a * (38 e 1l) * X ? K'* (8 1 ?)* X?. 

Using that fact that aK'/ax, = -aK2/ax2, we can write the derivatives of K. of 
order one and two in the following way: 

aK _ K K2 ___ 

ax ~~ l 8 2 le ) X = -K 2 ( a )*Xe 

axi ~ aX2 aX2(?)X 

K1 K 
aX2 aX2 ( 

) 

82K' _ 8K2 / (s- 

||( 8x 1? X|LjR) 2 /) 

(X4802 ax, aX2] XP 

o2Kf 8K'(y e oth ) han 

(3eorem a 
(3 ~ 88i)*- wit supportin 

IIl ))* XIL(R) 
(4.10) 1 8 C ~ ~ ~ R 

8 1) Ie)* *Xe 1LPR) 21p) + O 

Assertions (i) and (ii) now result from classical calculations based on the regularity 
of K away from 0 and on its decay. On the other hand, owing to (4.10), Caldero'n's 
theorem applies to prove our assertion (iii). E 
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We are now in a position to estimate the first term in the right-hand member of 
(4.8), which represents the particle part of the error. As is familiar in particle 
methods, we introduce the following notations. Denoting by (Xk)k the exact 
characteristic curves, i.e., the solutions of 

(dXk_ 

ds U(Xk, S), 

Xk(O) = Xk, 

and by (Xh )k the approximate characteristic curves defined in (2.2), we set 

ek(t) = Xk(t) - Xkh(t) 1 

iie(t) lK = Max Xk(t) - Xkh(t) 1, 

lie(t) Ilp E IBkihXk(t) -xi (t)l} 1 p< X. 

We then have the following result, based on the regularity properties established in 
Lemma 4.6, and whose proof can be found in [3]: 

LEMMA 4.7. Let T > 0. There exist constants Cp, EON LAxO such that for t E [O.T], 
E < E0, LAx < LX0 Lx/E < C andpE (2, + oo): 

(i) ||Ke *( w - wh)(.* lt) |LP(R2)~ Cp{;e + 
e2 

+ ietio) le(tyy} 

(ii) |K*( - _ h)(*,t)1PR2 e I + e + ie E) (t)Ilp} 

(iii) ||K * h(*vt) 00R2 + ) 

An immediate consequence of this result is 

LEMMA 4.8. Under the assumptions of Lemma 4.7, and for R large enough, we have 

C1 ((O_ ah )( *, t ) 11LP(QR ) 

(i) Cp2 
+ +2 + R(27p)- l + (l + le (t) l) 

Igph(W _ Coh)(-9 t) |1 'p at 

(ii) < -(?{2 + AX +e I + e )Il ie)It} 

(iii) |~~~~_h(C@h)(_- t) |1,e0t) 11.1E 

Finally, we have the following result which completes the study of the stability of 
the method. 
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LEMMA 4.9. Under the assumptions of Lemma 4.7 we have for t e [0, T] 

h((, t) 11i , {a C + I e(t)IK}). 

Proof. We write 

|hU( *,t) 1 CQ RlXh ( Co) 11Q,+ I gph ( ,h ) _ yOh ( ,h )I 

Lemma 4.8, assertion (iii), applies to bound the first term and Lemma 3.4 to 
bound the second. O 

Having obtained estimates for each of the terms in the right-hand member of 
(4.5), we are now in a position to give the 

Proof of Theorem 2. Let yp(t) = lioe (0) I Ip dO. From the definition of characteris- 
tics, we get 

dt y(t) f { IBkll(u u k)(X(),O) } i dO 

(4.11)k 

(4f11) {| (I|Bk|ih(Xk(O),O) - h( Xh (O) o) }d) . 

Denote by E1, F2, E3 the different brackets occurring in (4.5), 

E1 = K * h 
(w), E2 = F2 _- C)h E3 = #h(Coh) - yh(Coh) 

First we have 

IIE3 IIL2) L R 

Hence, 

(4.12) ( IBk IIE3(Xk(t), t)| I R 2 

Next, using classical tools from interpolation theory, we get 
l/p 

Lemms 4, 48I Bk bu {E2(IXk(t), t) I + 
(T k Xk ( th) e QvRe 

CIE2( t) 11 LP(&2f) + /AxIE2( , t) I11',PQ } 

l /p 

(4.1) {(kXBk l -BkahEl(Xk(t), t) |l) 
(k, X+ (t) ++ IeR 

Cf1 C|El(*-, t) IILP(QRf) + AI\XEl(-, t) 11,P QR } 

Lemmas 4.5, 4.8 now apply to bound f E(k, Xk(t)) IBk I (El + E2)(Xk(t), 0191P}/- 

Together with (4.12), this gives 
l/p 

( L [~~IBkij(u - U )(k(t), t) |l) 

(4.13) (,Xt)R) 

C CE 2 + _ + (2/P) -1 +I( + I (t 0) 11? |e (t) IIP) 
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Now if Xk(t) t Off we get 

(4.14) |u - U(k (t), t)| R. 

Using Lemma 4.9 and the decay of uh out of 0", we have 

(45 { IBkIh(Xk(t), t) - -h(Xh(t), t) r} 

(4.15) k 

C C((I + R0 )I)1()11 + 

The bounds (4.13)-(4.15) enable us to estimate the right-hand member of (4.11). In 
order to apply Gronwall's inequality, we define 

Th = supt t E [O.T], |e(t) lloo -<- 

We have 

yP,(t) S CP(E + - + R( 
- 

+ y(t)) [O Th 

where CP depends only on T, p and the exact solution ui. 
We therefore obtain 

(4.16) y( t) E + + R (21) t e [oiGh*I 

We now prove that Th = T. 
Clearly, we have 

|| e(t) llo 1 |e (t) lP/AX 
- 21p. 

Hence, 

|e (Th*) | o Cp e2AX-2/p + AX2-27p) + R(2/p) - 1AX - 2/p} 

< C { 82-(2s/p) + 
.2s-(2s/p)--1 

+ 8s-(2s/p) } 

provided Ax, ? and R meet the conditions given in the theorem. Choosing p such 
that 

2s 2s 

P P 

we get 

Ile (Th*) || <_ CPE-c < 2 

if e is small enough. Since Xk and Xkh are continuous functions of time, this is 
impossible unless Th* = T. 

Finally, (4.16) in turn leads to the following bound (via estimates of E1, E2, E3 in 
OR and the decay of u- and uh out of R 

jju - uh(.,t) IILP(R2) < C{e + A + R(2/P)1}, p e (2, + Xo), 

and the proof is completed. E 



CONVERGENCE OF A VORTEX IN CELL METHOD 425 

5. Conclusion. We have proved the convergence of a Vortex In Cell method in 
which, in order to compute velocity in one grid point, we need the vorticity carried 
by particles lying in the 16 closest cells. 

It is natural to wonder whether or not methods involving fewer particles converge. 
In fact, from the proof given in this paper, it is clear that the convergence of the 
conventional CIC method (in which (2.11) is replaced by uh = 9Bh(wh)) is related to 
the convergence of Vortex methods with cutoff functions D such that 

Ee LP(R2) n LO(R2), 

(5.1) __ a_ =3Ql. 

The author has proved, in unpublished work based on a slight modification of the 
results given in [3] (in particular of the stability analysis), that (5.1) actually leads to 
a convergent method, a result whose consequence is the convergence of the CIC 
method. 

Finally, we observe that the role of the condition R > Ro appearing in the proof 
of convergence is, in particular, to guarantee that particles cannot leave the compu- 
tational domain OR, In fact, this restriction, which was made for technical simplicity, 
can be omitted. We then have to modify the boundary coefficient CR(Wh) in order to 
take into account only the vortices which lie in QR, and our proof can be easily 
adapted to this situation. 

It remains now to consider extensions of this method, such as the 3-dimensional 
case and methods using more accurate numerical boundary conditions on FR. 
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